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Abstract: A machine learning model with physical constraints (ML-PC) is introduced to
perform diffuse optical tomography (DOT) reconstruction. DOT reconstruction is an ill-posed
and under-determined problem, and its quality suffers by model mismatches, complex boundary
conditions, tissue-probe contact, noise etc. Here, for the first time, we combine ultrasound-guided
DOT with ML to facilitate DOT reconstruction. Our method has two key components: (i) a neural
network based on auto-encoder is adopted for DOT reconstruction, and (ii) physical constraints
are implemented to achieve accurate reconstruction. Both qualitative and quantitative results
demonstrate that the accuracy of the proposed method surpasses that of existing models. In a
phantom study, compared with the Born conjugate gradient descent (Born-CGD) reconstruction
method, the ML-PC method decreases the mean percentage error of the reconstructed maximum
absorption coefficient from 16.41% to 13.4% for high contrast phantoms and from 23.42% to
9.06% for low contrast phantoms, with improved depth distribution of the target absorption maps.
In a clinical study, better contrast was obtained between malignant and benign breast lesions,
with the ratio of the medians of the maximum absorption coefficient improved from 1.63 to 2.22.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

According to the American Cancer Society, breast cancer is estimated to be the most common
type of cancer among women, with more than 284,200 new cases and approximately 44,130
deaths projected in the United States for 2021 [1]. X-ray mammography, ultrasound (US), and
magnetic resonance imaging (MRI) are widely used to detect and diagnose breast cancers.

Clinically, mammography is one of the most used imaging modalities for breast cancer
screening. It provides high resolution images, but it has significant limitations, such as low
contrast, ionizing radiation, relatively low sensitivity in early cancer diagnosis, reduced sensitivity
in women with dense breasts, and low specificity that results in a large number of unnecessary
biopsies [2]. Ultrasound is often used as an adjunct modality to mammography to diagnose
solid vs. cystic lesions; however, its diagnostic utility for solid masses is limited [3]. Although
MRI has excellent contrast and high resolution, uses nonionizing radiation, and provides high
sensitivity in breast cancer detection, the requisite injection of a contrast agent and its high costs
make MRI less accessible as a general screening tool [2].

Diffuse optical tomography (DOT) is a noninvasive functional imaging modality that utilizes
near-infrared (NIR) light to penetrate deeply into tissue and map its optical properties. Diffuse
light in the NIR wavelength range can penetrate several centimeters in soft tissue, such as the
breast and brain. DOT image reconstruction is performed using measurements obtained from
reflected or transmitted light at the tissue surface [4–7].

DOT is a promising modality for detecting and monitoring functional changes related to tumor
angiogenesis. Using multi-wavelength DOT, it is possible to quantify tissue characteristics, such
as the oxygenated, deoxygenated, and total hemoglobin concentrations (HbO2, HbR, and HbT),
as well as blood oxygen saturation (sO2), and lipid and water concentrations [8,9]. Clinical
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studies have revealed higher HbT in malignant lesions and lower HbT in both healthy and benign
tissues [8,10,11,12,13].

However, the low spatial resolution and lesion location uncertainty caused by intense light
scattering in tissue are challenges to DOT’s wide clinical use. In addition, DOT reconstruction
is an ill-posed and under-determined problem, which requires a regularization in inversion to
improve the convergence [14]. The algebraic reconstruction technique (ART) [15], nonlinear
iterative gradient-based optimization methods, and many other reconstruction methods, have
been put forward for accurate reconstruction [16]. Multi-modality approaches have also been
widely explored [17–19]. A complementary modality can provide prior information about the
target, including its depth and size, thus the reconstruction result can be improved. For example,
our group has introduced an ultrasound (US)-guided DOT approach that uses co-registered US
to identify the breast lesion location and size and uses DOT to reconstruct the lesion optical
absorption and then compute hemoglobin concentration [17].

However, model errors due to such factors as imperfect boundary conditions, the chest wall
underneath the breast tissue (as shown in Fig. 1), and inaccurate background tissue estimation can
result in inaccurate DOT reconstruction [20]. To overcome this challenge, a machine learning
(ML) approach, capable of learning a more accurate model for image reconstruction and widely
applied for cancer diagnosis [21,22], is a promising solution [23,24]. ML learns directly from
the data and formulates the relationship between optical properties and measurements, and thus a
more accurate model can be learned for DOT reconstruction.

Fig. 1. Illustration of DOT breast imaging.

Feng et al. used a back-propagation neural network for DOT reconstruction, which reconstructed
more details than the Gradient-based reconstruction with Tikhonov regularization [25]. Yedder
et al. used a deep learning method to model the inverse problem and obtained a higher quality of
reconstructed images than with a conventional analytic approach [26]. Yoo et al. constructed
a CNN model based on Lippman-Schwinger integral equation to achieve a high-quality DOT
reconstruction [27]. Mozumder et al. utilized a Bayesian approach and prior information to
perform a model-based iterative learning approach for DOT reconstruction [28]. Fang and
colleagues solved the ill-posed DOT inverse problem by a CNN model with a prior knowledge
[29].

An autoencoder was first introduced as an artificial neural network for learning target data
distributions via unsupervised learning [30], and several groups have recently discovered it
to be well suited for inverse problems [31–33]. However, one challenge in our study is the
significant difference between simulation data and clinical data. First, experimental measurement
errors are difficult to reproduce in simulation. Second, there are many parameters to simulate,
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such as the target’s optical properties and depth, the chest wall’s orientation and its optical
properties, and the optical properties of the normal reference breast tissue. Motivated by the
idea of physics-informed learning [34], here we propose a ML model with physical constraints
(ML-PC) to perform DOT reconstruction which learns an end-to-end mapping between the
measurements and target absorption distribution, with Born weights as a constraint. Compared
with CNN models developed by Yoo and Fang and the iterative model constructed by Mozumder,
we focused on parameters of the imaged medium, such as chest wall depth, chest wall angle,
target-reference mismatches, etc. We also added physical constraints to individualize the network
in the testing stage. To the best of our knowledge, this is the first ML model to be applied to
patient data for DOT reconstruction, and it has provided improved contrast between malignant
and benign breast lesions as well as improved lesion depth distributions.

2. Data

Three datasets were utilized to train, validate (fine-tune), and test the ML-PC model: simulation
data, phantom data, and clinical data. Simulation data were generated using the finite element
method, and they formed a large database for establishing the model in the training stage. Phantom
data using tissue-mimicking materials were acquired using a DOT system identical to that used for
obtaining the clinical data. The phantom data of homogeneous targets made of same absorption
contrast were used for training, and phantom data of inhomogeneous targets made of different
absorption contrast were used for validating the ML-PC model. Clinical data from patients with
breast lesions were used for testing ML-PC model. The reference measurements were generated
without any target in simulation data and collected from a homogenous phantom in phantom
studies. In patient data, the reference measurements were obtained from the contralateral normal
breast of each individual patient.

2.1. Simulation data

COMSOL software (COMSOL Multiphysics Company Ver. 5.5) was used to simulate the
forward process using different background tissue and target configurations. To simulate the
breast curvature, a hemisphere with a 20-centimeter diameter was used, and the top plane was
kept the same size and configuration as the DOT probe with 9 sources and 14 detectors located
at the same positions. As shown in Fig. 2, another layer with different optical properties was
added to simulate the chest wall. The diffusion equation was reformulated into the Helmholtz
wave equation in COMSOL, and an optical absorption boundary condition was used for all outer
boundaries [35]. The optical sources were modeled as isotropic point sources placed at one
transport mean free path underneath the probe, and the detectors were modeled as point detectors
at the probe-tissue interface. A tetrahedral mesh with a “finer” element size (COMSOL’s
terminology) was automatically created and adapted for the model’s physical settings.

We generated forward measurements with different target radii, target center depths, tar-
get absorption coefficients (µa), background absorption coefficients (µa0), reduced scattering
coefficients (µ′s0), chest wall depths, chest wall tilt angles, and chest wall optical properties.
During the forward model training of ML-PC, we also added 5% Gaussian noise to the simulation
data, which consisted of 104,247 cases (Table 1). Also, simulations of non-homogeneous targets
were included: we used top-half and bottom-half spherical targets with different µa distributions
and left-half and right-half target spherical targets with different µa distributions.

2.2. DOT system, phantom and clinical data

Phantom and patient data was acquired from a compact ultrasound guided DOT frequency-domain
system [36]. Our combined ultrasound and DOT hand-held probe is shown in Fig. 3. Four
laser diodes, with wavelengths 730, 785, 808, and 830 nm, were sequentially switched by two
optical switches to 9 source positions on the probe. The system used heterodyne detection:
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Fig. 2. Cross-section of the FEM simulation geometry.

Table 1. Simulation parameters

PARAMETER, UNITS RANGE (START:STEP:STOP) NO

µa, cm−1 0.06 : 0.02 : 0.3 13

RADIUS, cm 0.5 : 0.25 : 3 11

DEPTH*, cm 0.5 : 0.5 : 1.5 3

BACKGROUND µa, cm−1 0.02 : 0.02 : 0.06 3

CHEST DEPTH, cm 0.5 : 0.5 : 1.5 3

CHEST ANGLE, ° -15 : 15 : 15 3

CHEST µa, cm−1 0.1: 0.05 : 0.2 3

µ′
scm−1 4 : 2 : 8 3

the laser diodes were modulated at 140.02 MHz, and the detected signals were mixed with the
140 MHz reference signal to generate 20 kHz signal. The reflected light from each source was
received simultaneously by 14 light guides coupled to 14 photomultiplier detectors. The entire
data acquisition (DAQ) was about 3-4 seconds. The distances between the sources and detectors
ranged from 3.2 to 8.5 cm.

Fig. 3. Ultrasound-guided DOT probe with 9 source fibers and 14 light guides.

The breast phantoms mimicked tumors in a real breast. Spherical phantom tumor targets
were placed in an intralipid solution with an absorption coefficient of 0.02 cm−1 and a reduced
scattering coefficient of 7 cm−1, values that mimicked background tissue optical properties and
were also within the range of our simulation. Two sets of homogeneous tumor phantom were
used, with absorption coefficients of 0.11 cm−1 and 0.23 cm−1. The diameters of these phantoms
were 1 cm, 2 cm, and 3 cm. The phantoms were placed at 1 cm, 1.5 cm, 2 cm, 2.5 cm, and 3 cm
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depths, measured from the solution surface to the center of the target. There were 30 different
phantom configurations in all. Each phantom was measured 3 times, so there were 90 phantom
datasets in total, which were used for training.

Non-homogeneous targets consisted of two hemispheres with different µa, in two configurations
(the high µa hemisphere on either the top or bottom) and four phantom diameters (2.0, 2.4, 3, and
3.6 cm). Each phantom was measured 3 times, so there were 24 non-homogeneous phantoms,
which were all used to test the model.

Patient data were from an on-going clinical study. The study was approved by the local
Institutional Review Board (IRB) and was HIPPA compliant. All patients signed an informed
consent form before participating in the study. Five benign and five malignant breast lesions were
used in this manuscript in the testing stage to demonstrate the feasibility of the ML-PC approach.

3. Born-CGD method

Born-conjugate gradient descent (CGD)-based reconstruction algorithm uses Born-approximation
and CGD optimization algorithms for US-guided DOT [37]. Light transport in biological tissue
can be approximated by the diffusion Eq. (1) when a medium has a high-albedo (µa ≪ µs) and
that light scattering in the tissue is nearly isotropic:

∂Φ(r⃗,ω)
c∂ω

+ µaΦ(r⃗,ω) − ∇ · [D∇Φ(r⃗,ω)] = S(r⃗,ω), (1)

where µa denotes the absorption coefficient, D denotes the diffusion coefficient, and S denotes
the source power density. For monochromatic light, the fluence rate Φ can be expressed as a
photon density wave U, U = φ

c hυ , and then (1) can be rewritten as:

∂U(r⃗,ω)
∂ω

+ cµaU(r⃗,ω) − c∇ · [D∇U(r⃗,ω)] = q(r⃗,ω). (2)

Here, c denotes the speed of light and hυ is the photon energy. In frequency domain DOT, the
photon density wave UAC consists of a homogeneous part, , and a differential part, USC. The
absorption coefficient, µa, is expressed by its homo∆µaU0 geneous part, µa0, and a differential
part, . If ∆µa is much less than µa0, the Born approximation, USC << U0, is valid. Note that the
object to be imaged is assumed to have absorption contrast only because it is much higher than
scattering contrast for malignant lesions.

The Born solution of a semi-infinite medium is given as (3):

USC(rs, rd) = ∫ U0(rs, rv) · O(rv) · G(rv, rd)dr
= WBorn × ∆µa

(3)

where O(r) = −
∆µa(r)

D . Here, G reµa0 presents the Green’s function of the semi-infinite
medium. Additionally, rs denotes the sources’ positions, rv represents the voxels’ positions, rd
denotes the detectors’ positions. WBorn is the Born weight matrix and ∆µa is the difference vector
between the true µa(r) distribution and the background .

For the Born weight matrix calculation, the absorption and scattering coefficients are obtained
by fitting reflection measurements acquired from homogeneous media in simulation and phantom
studies, and contralateral normal breast in patient data.

4. ML-PC model

Here, we introduce our ML-PC model similar to an auto-encoder structure, which uses two neural
networks to solve the forward and inverse problems [38].

The forward model of ML-PC learns the photon transport process (Fig. 4(A)). In a homogeneous
medium, the diffusion equation is a well-established model. But the accuracy of the diffusion
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equation can be compromised in clinical studies, where biological tissue may not satisfy the
diffusion approximation due to complex boundary conditions, chest wall underneath the breast
tissue, poor probe-tissue contact, etc. Thus, the data-driven neural network is a better choice.

Fig. 4. Training process of ML-PC model using simulation and part of phantom data. A
and B illustrate the training process of forward ML-PC model and inverse ML-PC model,
respectively.

The inverse model of ML-PC (Fig. 4(B)) tries to reconstruct the optical properties from
measurements. Because the inverse problem is ill-posed and under-determined, it is difficult
for the neural network to achieve an accurate reconstruction. The inverse network needs
information from the forward model of ML-PC to achieve more accurate reconstruction and this
is accomplished during training process illustrated in Fig. 5 with more details given in Section IV
and V. Additionally, the co-registered US image can provide anatomical information to improve
lesion localization for the inverse model [23].

Fig. 5. Validation process of ML-PC model.
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In the inverse model, the normalized measurement, referred as perturbation and noted as
P(measured), was used as the input data. P(measured) is the percentage difference between the
target measurements and reference measurements:

P(measured) =
M(target) − M(ref )

M(ref )
(4)

Both forward and inverse models use fully connected layers. Based on the auto-encoder
structure, the forward model has a four-layer structure: an input layer (1792 voxels, 0.25 cm x 0.25
cm x 0.5 cm), two hidden layers (256 neurons), and an output layer (252 neurons). The inverse
model also has four layers: an input layer (252 neurons), two hidden layers (256 neurons), and an
output layer (1792 voxels). A ReLU activation layer and an Adam optimizer with a learning rate
of 1e−4 are used. Because we use perturbation as input to the inverse model (Eq. (4)), there is no
normalization to the input data.

4.1. Training

In training stage (as shown in Fig. 4), we used simulation data and homogeneous phantom data
(as shown in Table 2) for which we had ground truth (true µa map). We trained the model with
mixed simulation and phantom data. With ground truth, we could train both forward and inverse
models in a supervised way. For the forward model (Fig. 4(A)), the input was true µa map, the
output was the predicted perturbation, P(predicted), and the loss function was the mean square
error (MSE) of the COMSOL computed forward perturbation measurement, P(measured), and
ML-PC predicted perturbation, with L2 regularization for neurons’ weights w.

Loss(forward model) = | |P(predicted) − P(measured)| |2 + | |w| |2 (5)

For the inverse model (Fig. 4(B)), the input was the P (measured), and the output was the
reconstructed µ̃a(r)map, and the loss function was the MSE of the true µa(r) and the reconstructed
µ̃a(r), plus L2 regularization for neurons’ weights w.

Loss(inverse model) = | |µa(reconstructed) − µa(truth)| |2 + | |w| |2 (6)

Table 2. Data for ML-PC model

Training (mixed) Validation (mixed) Testing

Simulation data Simulation data Phantom data (Hemisphere)

Phantom data (Homogeneous) Phantom data (Non-homogeneous) Clinical data

The model was implemented in TensorFlow and trained for a total of 200 epochs on an Nvidia
1080 Ti GPU using ADAM optimizer with learning rate of 0.001, beta1 of 0.9, beta2 of 0.999
and epsilon of 1e-08. The batch size 256 was used and the training process was monitored for
early stopping with auto mode in TensorFlow.

4.2. Testing and physical constraints for ML-PC

As discussed in Section II, DOT reconstruction is an ill-posed and under-determined problem.
If we used the neural network only without any additional information, the reconstruction may
be limited by the simulation data. Thus, we added two types of physical constraints to validate
ML-PC model to achieve an accurate reconstruction (as shown in Fig. 5). And this stage, we
combined the forward and inverse model to build our ML-PC model. Then we used weights
from the training stage as an initial estimate, fine-tuned the network with physical constraints.

One physical constraint was the commonly used Born object function (Born constraint), which
added physical model information. To test whether the reconstruction approximately follows
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the Born solution, this constraint used the Born weight multiplied by ∆µa(r) as a computed
perturbation. Then we compared the computed perturbation with the training stage predicted
perturbation.

∆µa = µa(r) − µa0

Born_loss = | |P(predicted) − WBorn ∗ ∆µa | |.
(7)

As a second constraint, anatomical information was added to the reconstruction to reconstruct
the lesion at the similar location as identified by co-registered US [39]. First, we assumed that
the target had an approximately Gaussian distribution which created ball-like shape, and that
the target’s µa were higher than that of the surroundings. This is because the µa of a malignant
lesion is typically higher than that of surrounding background. We calculated µa0 and µ′s0 based
on linear fitting of reference measurements [40].

The anatomical distribution function is shown in Eq. (8), where r is the target radius measured
from the center of the co-registered US image, and dvt is the distance between each voxel and the
target center:

anatomical_distribution = − 1√
πr exp

(︂
−

d2
vt

2r2

)︂
. (8)

Because the scales of the anatomical distribution and the reconstructed µ̃a(r) map were
different, we used the total variation (TV) loss of the anatomical constraint and µ̃a(r) map, as
shown in Eq. (9), where v is the voxel value. TV calculates the difference between a voxel and the
surrounding voxels, and we used it to calculate the voxel gradients difference of the anatomical
distribution and the reconstructed µ̃a(r) map. So, it can measure how close the anatomical
distribution was to the reconstructed µ̃a(r).

TV(v) =
∑︁
i,j

(︃√︂
|vi+1,j − vi,j |

2 +

√︂
|vi,j+1 − vi,j |

2
)︃

(9)

Moreover, we added L2 regularization for neurons’ weights w and biases b to avoid overfitting.
The final loss function for validation stage is formulated as in (10).

Loss(finetune) = | |P(measured) − P(predicted)| |+
γ1 | |P(predicted) − WBorn ∗ ∆µa | |+

γ2 | |TV(anatomical_distribution) − TV(µ̃a(r) )| | + γ3(| |w| |2 + | |b| |2) .
(10)

Here, γ1, γ2, and γ3 are small coefficients, 0.1, 0.001, and 0.001, respectively, determined
empirically.

5. Quantitative evaluation

The reconstructed target diameter, reconstruction depth profile, and reconstruction of the
maximum absorption coefficient were used to quantitatively compare ML-PC with the benchmark
Born-CGD method. To compare target shapes, the reconstructed target diameter was calculated
from the full width at half maximum (FWHM) of the reconstructed µa distribution, µ̃a(r).

5.1. Reconstructed depth profile

To compare depth profiles, we implemented a method used by Zhang et al. [20]. The method
used the ratio of the sums of each voxel’s absorption coefficient in the first and n-th depth layers
to quantitatively evaluate the depth profiles. The contrast of layer n was calculated using (11):

Cn =
∑︁
µ̃a(r)n∑︁
µ̃a(r)1

. (11)

The first reconstructed layer is used as the reference layer, so its contrast is always 1.
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5.2. Reconstructed maximum absorption coefficient

The reconstructed maximum absorption coefficient was used to quantify the differences between
ML-PC and Born-CGD methods for phantom targets with different absorption coefficients.

6. Results

For diagnosis of breast cancer, we have focused on total hemoglobin concentration (HbT) because
it is related to tumor angiogenesis. HbT is calculated using absorption coefficients reconstructed
from four optical wavelengths. Therefore, we reconstructed absorption coefficient only. Here,
780 nm is used to demonstrate the concept and other wavelengths can be similarly used in ML-PC.

6.1. Phantom reconstruction results

To evaluate the difference between ML-PC with the conventional ML method and the Born-CGD
method, we designed a set of experiments with non-homogeneous phantoms. The conventional
ML model was the same as our ML-PC model, but without physical constraints. As shown in
Fig. 6, the non-homogeneous phantoms were made by forming two half balls with the same
3.2 cm diameter but different absorption coefficients: the white half-ball has a low contrast
(0.11 cm−1), but the grey half-ball has a high contrast (0.23 cm−1). In imaging experiments, one
phantom (phantom #1) was positioned with the high contrast half ball on top and the low contrast
half ball on bottom, while the second phantom (phantom #2) reversed this arrangement. The
phantoms were imbedded 2.5 cm deep in an intralipid solution with an absorption coefficient
0.02 cm−1 and a reduced scattering coefficient 7-8 cm−1.

Fig. 6. Non-homogeneous phantoms. Left (phantom #1) phantom with a high contrast half
ball on top; Right (phantom #2) phantom with a low contrast half ball on top.

The reconstruction results from the three methods, ML without physical constraints, Born-CGD,
and ML-PC, are shown in Figs. 7 and 8. The ground truth should have 5-layers (from layer
3 to layer 7). We can see that ML method without physical constraints reconstructed the two
non-homogeneous phantoms as homogeneous targets. This result indicates that, without physical
constraints, the ML method is likely to memorize patterns from training instead of learning the
reconstruction process. Thus, obtaining an accurate testing result from the ML method without
physical constraints would require a huge training dataset with all types of non-homogeneous
and heterogeneous targets, which is not very practical.

The Born-CGD method provides better results than the ML method without physical constraints.
However, due to the light shadowing effect, the reconstructed absorption map does not show
absorption contrast in the deeper layers (slices 5 and 6, Fig. 7) in phantom #1. In reflection
geometry measurements, photons are absorbed and scattered more by the upper portion of
the target, thus detectors detect more photons propagated from the top portion [41]. However,
the ML-PC method can learn from data and can reconstruct absorption maps with improved
target depth profiles. The reconstructed absorption distribution clearly represents the depth-wise
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Fig. 7. Reconstruction results of phantom #1. Left: ML method without physical constraints;
Middle: Born-CGD method; Right: ML-PC. Each figure consists of 7 slices, from the
surface to a 3.5 cm depth, with 0.5 cm spacing. Each slice is 9 cm by 9 cm in the x and y
dimensions.

Fig. 8. Reconstruction results of phantom #2. Left: ML method without physical constraints;
Middle: Born-CGD method; Right: ML-PC.

progression of the slices, from high contrast to low in phantom #1 (Fig. 7) and from low contrast
to high in phantom #2 (Fig. 8).

By validating the network with physical constraints, ML-PC combines the strengths of the
conventional ML method and the Born-CGD method. For example, ML-PC reduces the need for
massive training data by using Born loss. The physical constraints can tune the neural network
with new data that was not included in the training. Similarly, by using ground truth information,
ML-PC learns a better model than the Born model, showing a strong depth-dependent profile in
reconstructed absorption maps.

6.2. Phantom quantitative results

6.2.1. Reconstructed target diameters

In Table 3, the ML reconstructed target shapes are much closer to the ground truth, while the
Born-CGD reconstructed results are much larger. Also, when the target is deep or has low
contrast, the Born-CGD method reconstructs the target shape with much larger dimensions due
to the lower number of diffused photons received.

6.2.2. Reconstructed target depth profile

For comparison, we used a high contrast, 3.0 cm diameter target, then reconstructed its absorption
in five layers. Layer one is the first layer that contains the target.

As Fig. 9 shows, each box describes the contrast of each layer for five target center depths
(2.0–4.0 cm, with a 0.5 cm step) and three repeated experiments. When using the Born-CGD
method, there are almost no reconstructed signals for layers 2 through 5. On the other hand, the
ML-PC method provides stronger contrast values for layers 2 and 3.



Research Article Vol. 12, No. 9 / 1 Sep 2021 / Biomedical Optics Express 5730

Table 3. Reconstructed diameters; true diameters=3 cm

Phantom Configurations
Born-CGD, cm ML-PC, cm

µa, cm−1 center depth, cm

0.2 2.0 3.48 2.74

0.2 2.5 4.36 3.28

0.2 3.0 2.94 2.94

0.2 3.5 3.04 2.82

0.1 2.0 4.06 3.26

0.1 2.5 5.02 3.06

0.1 3.0 3.44 2.88

0.1 3.5 3.60 3.08

Fig. 9. A, Born-CGD method reconstructed contrast for each layer; B, ML-PC method
reconstructed contrast for each layer.
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The layer contrast indicates that the ML-PC method can reconstruct deep layers better than
the Born-CGD method. ML-PC, by learning from the ground truth and combining physical
constraints, achieves better results than either the Born-CGD method or the ML method with no
physical constraints.

6.2.3. Reconstruction of the maximum absorption coefficient

Figure 10 shows the maximum µa values of reconstructed high contrast (0.23 cm−1) and low
contrast (0.11 cm−1) phantom targets using Born-CGD method and ML-PC.

Fig. 10. Reconstructed maximum µa values from the Born-CGD and ML-PC methods for
high contrast (0.23 cm−1) and low contrast phantoms (0.11 cm−1).

To quantify the differences, the mean percentage error is used, which is the absolute difference
between the ground truth value and the reconstructed value, divided by the ground truth. For a
high contrast phantom, the mean percentage error for Born-CGD is 16.41%; for ML-PC it is
13.4%. For a low contrast phantom, the mean percentage error for Born-CGD is 23.42%; for
ML-PC it is 9.06%.

Figure 10 shows that the ML-PC method provides more accurate reconstruction than the
Born-CGD method. Especially for some very deep phantom targets, Born-CGD does not
reconstruct well, because few photons containing the information of the lesion can arrive at the
detectors. However, the ML-PC method learns the reconstruction even for scant photons, so there
are still some contrasts that indicates a deep target.

6.3. Clinical examples

To further test for our ML-PC method, we have shown results of five malignant and five benign
clinical cases. Quantitative results for the maximum absorption coefficients of the ML-PC and
Born-CGD methods and their target depth profiles are also provided.

Figure 11 shows reconstruction results of a malignant case (A-C) and a benign case (D-F).
Figures 11(B) and (C) show that the ML-PC method can reconstruct deeper than the Born-CGD
method for this malignant lesion. Also, the target shape in Fig. 11(C) is closer to the round shape
shown in the US image than in Fig. 11(B).

In Figs. 11(E) and (F), reconstructions from a benign case show that both the ML-PC method
and Born-CGD method have similar target depth profiles and absorption coefficients, but the
ML-PC method positions the reconstructed lesion in a better location (in the center of the figure).

We also applied the same anatomical constraint used in ML-PC method to Born-CGD to
compare the potential improvement of additional constraint to Born-CGD method. The anatomical
constraint improved the malignant case with the reconstructed lesion more localized to the center,
however, did not significantly change the diffused target map for the benign lesion.
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Fig. 11. Examples from patient studies. A and D are co-registered ultrasound images. B
and E are reconstruction results using the Born-CGD method. C and F are reconstruction
results using the ML-PC method. In the top row, A, B, and C are images from a 53-year-old
women with a high grade invasive ductal carcinoma. Based on co-registered ultrasound, the
center of the mass is located at 1.2 cm depth. In the bottom row, D, E, and F are images
from a 55-year-old woman with a benign fibroadenoma. The center of the mass is located at
0.9 cm depth.

Figure 12 shows the reconstructed maximum absorption coefficients for all the clinical
data, using both the Born-CGD method and ML-PC method. Both methods provide similar
reconstructions: for malignant cases, the maximum absorption coefficients are near 0.2 cm−1,
and for benign cases, the maximum absorption coefficients are near 0.1 cm−1. However, the
ML-PC method has better contrast between malignant and benign cases, based on the p value.

Fig. 12. Clinically reconstructed maximum µa values from the Born-CGD and ML-PC
methods for malignant (M) and benign (B) cases.
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Also, the ratio of the medians of the maximum µa values for malignant and benign cases is 1.63
using Born-CGD, and 2.22 using ML-PC. Therefore, the ML-PC method can better separate
benign and malignant lesions.

As in the phantom study, the contrasts of each layer for malignant and benign cases were
computed using the Born-CGD and ML-PC methods, with the results shown in Fig. 13. The
ML-PC method has a better depth profile than the Born-CGD method for both malignant and
benign cases. However, in malignant cases, due to the light shadowing effect, the ML-PC contrast
in deeper layers is much better than that using the Born-CGD method.

Fig. 13. A, Contrasts of three reconstructed layers for five malignant cases using the
Born-CGD and ML-PC methods; B, contrasts of three reconstructed layers for five benign
cases using Born-CGD and ML-PC.

7. Conclusions

In this paper, we proposed a new DOT reconstruction method using machine learning model
with physical constraints (ML-PC). The model was based on an auto-encoder and trained with
simulation and phantom experiments to perform reconstruction. A fine-tuning or validation
strategy was used to further improve the reconstruction. Physical constraints (the Born constraint
and an anatomical constraint) were added to the model.

By tuning the network with physical constraints, ML-PC combines the strengths of the ML
method (better depth profiles) and the Born-CGD method (more general model). For example,
ML-PC reduces the need for massive training data by using Born loss. The physical constraints
can tune the neural network with new data that was not included in the training and validation.
ML-PC provides a better model than the Born model using complex training data, showing a
better depth profile in reconstructed absorption maps. With the physical constraints, ML-PC
method has the strengths of the ML model, such as less depth-dependent reconstruction, more
accurately reconstructed target sizes and absorption coefficients, and more robustness than
provided by the Born-CGD method.

The Born constraint makes the reconstructions follow the physical model. And the anatomical
constraint will force the reconstruction to be similar to the US image. So, these constraints will
help our ML-PC model to solve ill-posed and under-determined DOT inverse problem.

Phantom experiments and clinical data demonstrate the strength of the ML-PC model.
Quantitative results show that the ML-PC method provides more accurate maximum absorption
coefficients, target sizes, and depth profiles. The computation cost of reconstructing the µa map
with the ML-PC model is at least an order of magnitude faster than with the Born-CGD method.

Although our simulation and phantom data include non-homogeneous targets, differences
between breast lesions and simulation or phantom targets remain. ML-PC can be further improved
by including more heterogeneous targets in training, and extending the current ranges of target
absorption and scattering coefficients in training data. We also plan to add multiple targets in the
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training data to further improve the ML-PC model. Additionally, the background tissue and chest
wall in the simulation and phantom data are homogeneous, so more heterogeneous background
tissue will be used to improve the training of ML-PC model. Furthermore, the ML-PC method
used Born constraint with Born weights computed from a semi-infinite analytical solution, when
a medium is significantly deviated from the semi-infinite assumption, the ML-PC may be limited.
Lastly, if a DOT system with different geometry and source-detector pairs, the ML-PC model
will need to be re-trained. However, the ML-PC structure can remain the same. Future work will
also demonstrate the robustness of the proposed ML-PC method on a large clinical data set.
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